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Abstract

An adaptive and efficient volume element subdivision method using binary tree for evaluation of

nearly singular domain integrals with continuous or discontinuous kernel in three-dimensional (3-D)

boundary element method (BEM) has been presented. In the Conventional Subdivision Method

(CSM) for evaluation of nearly singular integrals, the patches are obtained by simply connecting the

source point with each vertex of the element. Thus, the accuracy of the integral obtained with CSM

is easily affected by the shape of the element and the location of the source point. In contrast, the

proposed Binary-Tree Subdivision Method (BTSM) is more convenient to implement and can

guarantee successful patch generation under any circumstances for accurate evaluation of nearly

singular domain integrals with continuous or discontinuous kernel. Numerical results for volume

elements of arbitrary type with various relative locations of the source point demonstrate robustness,

accuracy and efficiency of the proposed method.

Keywords: BEM, nearly singular integral, binary-tree, element subdivision, Gaussian quadrature,

Hammer quadrature

1. Introduction

With the distinct feature that only the boundary is required to be discretized into elements for

linear and exterior problems, the boundary element method (BEM) [1] has been developed rapidly to

such a level that it can be widely applied to solve very complicated engineering problems, such as

potential problems [2-4], elastostatic problems [5-7], contact problems [8], fracture mechanics

problems [9] and acoustics problems [10,11]. Application of the BEM to a boundary value problem



with body forces, time dependent effects or certain class of non-linearities generally leads to an

integral equation which contains domain integrals [12]. Nearly singular integrals arise when the

source point is close to but not inside or on the boundary of element. In BEM, nearly singular

integrals come up in the following physical situations [13]: (1) Computing the interior quantities

close to the boundary; (2) There are great differences among the sizes of adjoining element meshes;

(3) For narrow and thin domains; (4) For non-linear problems in which the integrals in the domains

near the boundary need to be calculated. It should be noted that, theoretically, the domain integrals

are actually regular since the value of their integrand is finite. However, for evaluation of nearly

singular integrals with continuous or discontinuous kernel, the value of the integrand varies

dramatically if the field point is at some discontinuous point of the fundamental solution or the

source point is close to the element of integral. Hence, it is of crucial importance to evaluate nearly

singular domain integrals accurately and efficiently in BEM implementation.

(a) (b) (c)
Fig. 1. Various element subdivision methods: (a) conventional subdivision method,

(b) quad-tree subdivision method, and (c) spherical element subdivision method.

The main approaches for evaluation of nearly singular domain integrals in BEM have been the use

of element subdivision methods such as the Conventional Subdivision Method (CSM) [14] (Fig.

1(a)), the Quad-Tree Subdivision Method (QTSM) [15] (Fig. 1(b)), the Spherical Subdivision

Method (SSM) [16] (Fig. 1(c)), etc. The most widely used method is the CSM, in which the patches

are obtained by simply connecting the source point with each vertex of the element. Note that the

requirement for achieving the connectivity of the desirable mesh can still be a bottleneck for

complex geometries. Inevitably, there are some slender volume elements in the process of mesh

generation [17] (see Fig.2). As such, the CSM may produce poor-quality patches in cases where the



element is distorted or irregular in shape. Based on the quad-tree data structure, the QTSM may

generate more pleonastic patches for integration, thus resulting in low efficiency of computation.

These methods are implemented in the local coordinate system of the element rather than in the

physical coordinate system. Thus, the accuracy of integral evaluated by the CSM or the QTSM is

easily affected by the shape of the element and the location of the source point. In addition, the

ultimate patches obtained by these methods can hardly guarantee the accuracy of domain integration

with discontinuous kernel. The SSM proposed by Zhang [16], which has the ability to subdivide an

element into a number of well-shaped patches through a sequence of spheres with decreasing radius.

Similar to the Advancing Front Method (AFM) in mesh generation, the SSM is an empirical

subdivision method without strict theory demonstration, but has been verified by a large amount of

experiments. This method is applicable to arbitrary fundamental solution, arbitrary shape of element

and arbitrary location of the source point. Although the SSM overcomes all the difficulties associated

with integration in BEM, it does not guarantee convergence of successful element subdivision for

some situations. To take care of these situations, we propose an adaptive and efficient element

subdivision method based on binary tree [18] for nearly singular domain integrals with continuous or

discontinuous kernel in BEM. The proposed method is an essential complement to the SSM, which

can generate patches successfully under any circumstances.

Fig. 2. Adaptive mesh generation of thin structures.

This paper is organized as follows. Detailed description of an adaptive and efficient volume

element subdivision method using binary tree is presented in Section 2. Section 3 presents the key

ideas of the BTSM for nearly singular domain integrals with continuous or discontinuous kernel.

Section 4 presents construction of valid jagged core cavities for projection which is an important part



of our method. Section 5 details how the cavity projection algorithm works to generate high-quality

patches. Numerical examples for different types of volume elements with various relative locations

of the source point are given in Section 6 followed by conclusions in Section 7.

2. Volume element subdivision method using binary tree

Consider a general fundamental solution ( , )f P Q for three-dimensional problems. The kernel

( , )f P Q can be classified into two types: continuous function and discontinuous function (see Fig.3).

If the kernel ( , )f P Q is bounded everywhere in the domain for the source point P, the domain

integral is regular. On the other hand, if the kernel ( , )f P Q becomes infinite at some points, it is

singular or nearly singular. The following domain integral is dealt with in this paper:

( , )( ) ( , ) ( ) ( )
( , )
f P QI P f P Q N Q d N Q d
r P Q 

     (1)

where P is the source point, Q is the field point,  is the domain of problem, ( , )f P Q is the

non-singular part of the kernel, and ( , )r P Q is the distance between the points P and Q.

(a) (b)

Fig. 3. Different types of fundamental solution: (a) the continuous kernel, (b) the discontinuous kernel.

2.1 Element Subdivision Rules

Spatial decomposition methods such as binary tree, quadtree and octree, were originally proposed

as a way to represent approximation of geometric objects. These methods have been designed to

meet the needs of fully automatic spatial decomposition and employed extensively to arbitrary

complex non-manifold geometries. The spatial decomposition methods also reduce the extensive

amount of time and effort required to generate sub-regions with semi-automatic methods. These



decomposition approaches are robust and reliable in theory and have a wide range of applications

in engineering. Hence, we opt for binary-tree subdivision to improve the computational accuracy of

the domain integrals and overcome disadvantages of the CSM, the QTSM and the SSM. In this

method, the volume element is firstly subdivided into a number of patches by binary tree and is

intersected with sphere of specified radius if necessary. A significant advantage of this structure is

that a single data structure can handle volume element subdivision very efficiently.

(a) (b) (c) (d)

Fig. 4. The standard surface and volume elements in BEM: (a) the continuous surface elements,

(b) the discontinuous surface elements, (c) the continuous volume elements, (d) the discontinuous volume elements.

Application of the BEM to solve a boundary integral equation with domain integrals, the surface

mesh and the domain mesh are usually both required to be generated. As is illustrated in Fig. 4,

unless otherwise mentioned, the non-mesh source points in this paper mainly refer to the nodes (the

sphere marked in yellow) of the standard surface or volume elements, such as the continuous and

discontinuous elements in BEM. In the binary-tree subdivision scheme, the subdivision rules are

based on the local geometric properties of sub-element and sphere or the reference subdivision ratio.

The schematic description in Fig. 5 explains the element subdivision rule in three dimensions and in

two dimensions, respectively. For nearly singular domain integrals, the subdivision rules are only

based on the subdivision ratio  . The subdivision criterion of element subdivision for nearly

singular domain integrals can be expressed as Ref  . The subdivision ratio  , by definition, is

the ratio of circumradius l of sub-element to the distance d between the source point P and the

geometric center O of sub-element, i.e. /l d  . The reference subdivision ratio Ref is defined

on the basis of experience and different types of volume element. In the process of implementation,

the reference subdivision ratio Ref is set to around 1.0. For regular volume elements, the reference



subdivision ratio Ref is greater than or equal to 1.0. For slender volume elements, the reference

subdivision ratio Ref is less than or equal to 1.0. The specific parameter of the reference

subdivision ratio Ref is determined based on extensive experimental data. The subdivision will be

executed continuously when the subdivision ratio is greater than the reference value. For nearly

singular domain integrals with continuous kernel, the specified radius 0r is set to 0. For nearly

singular domain integrals with discontinuous kernel, the specified radius 0r denotes the distance

between the source point and the discontinuous point.

(a) (b)

Fig. 5. The element subdivision criterion: (a) description of the element subdivision rule in three dimensions,

(b) schematic of the element subdivision rule in two dimensions.

2.2 Element Subdivision Techniques

A binary tree is a tree data structure in which each node has at most two children. Hence, during

the process of element subdivision, the root volume element is subdivided into two equal-sized or

different kinds of sub-elements, and then each of them may be recursively refined until the ultimate

sub-elements meet the stopping criterion. Base on the size and type of volume element, different

element subdivision techniques can be applied to them. As is illustrated in Fig. 6, hexahedral,

pentahedral and regular tetrahedral elements can be subdivided into two sub-elements of the same

shape as their ancestor. A slender tetrahedral element can be subdivided into a tetrahedral

sub-element and a pentahedral sub-element to achieve best performance of element subdivision.



Hexahedral Element Pentahedral Element

Tetrahedral Element

(a) (b)

Fig. 6. Element subdivision techniques: (a) the binary-tree data structure,

(b) subdivision techniques of different types of elements.

3. The key ideas of the BTSM for nearly singular domain integrals

For nearly singular domain integrals with continuous kernel, the fundamental solution is

continuous everywhere in the domain of problem. It is unnecessary to perform any additional

operation for element subdivision other than the binary-tree subdivision scheme. A reasonable result

can be achieved with the above mentioned subdivision algorithm for different types of elements.

For nearly singular domain integrals with discontinuous kernel, the fundamental solution may

be discontinuous at some points, called discontinuous points. Theoretically, the domain integrals are

actually regular since the value of their integrand is finite. However, the value of the integrand varies

dramatically if the field point is at the discontinuous points of the fundamental solution or the source

point is close to the element of integral. The ultimate patches are naturally divided into two parts by

the sphere with specified radius 0r which is the distance between the source point and the

discontinuous point. To better understand, the algorithm will be explained in two dimensions. The

projection cavity construction algorithm can be regarded as an extension of the algorithm for the

two-dimensional case. An elimination process is necessary in which the straddling sub-elements are

thrown away, and remaining sub-elements are taken as the eligible patches. Thus, the inner and outer

projection cavities are constructed after the elimination process. There is a separation between the

cavity faces and the boundary of sphere. It is reasonable to generate patches by projecting the cavity

faces along the specified direction until they reach the sphere (see Fig. 7). The key ideas of the

BTSM for nearly singular domain integrals with continuous or discontinuous kernel is further

described in the flow diagram shown in Fig. 8.



(a) Both inner cavity and outer cavity (b) Only the inner cavity (c) Only the outer cavity

Fig. 7. The key ideas of the BTSM with different types of projection cavity construction
for nearly singular domain integrals with discontinuous kernel.

Fig. 8. Flow diagram of the BTSM for nearly singular domain integrals with continuous or discontinuous kernel.



4. Construction of the valid core projection cavities

An important part of the binary-tree element subdivision method is construction of valid jagged

core cavities for projection. For nearly singular domain integrals with discontinuous kernel, it is

necessary to construct the inner and outer projection cavities. A key aspect of the projection cavity

construction is to pick up the faces of sub-elements obtained in the ultimate refinement structure [19].

One of the basic requirements of projection cavity construction is that the cavity faces should be as

near to the boundary of sphere as possible. Further, the faces of the core projection cavity must be

matched to the boundary of sphere. Hence, construction of the valid core projection cavities is of

crucial importance for successful implementation of patch generation.

To construct the projection cavity conveniently and automatically, the status of ultimate

sub-element entities should first be set. As is illustrated in Fig. 9, the ultimate subdivision

sub-elements obtained and their related topology items, including vertices, edges and faces, can be

classified into three types: exterior, interior and straddling. The status of vertices (whether they are in

the interior or exterior of sphere) is determined by the distance to the sphere center. If the distance is

less than the radius of sphere, the vertex is an interior one. Otherwise, the status of the vertex is

exterior. The status of sub-elements can be obtained simply after the judgment of vertex status. A

sub-element will be named as an interior/exterior element if its vertices are all interior/exterior. The

remaining sub-elements and their related topology items that are not entirely within the sphere are

named as the straddling entities. Thus, the sub-elements 1 2 3,  and E E E (marked in purple, blue and

red in Fig. 9, respectively) are interior sub-element, straddling sub-element and exterior sub-element,

respectively.

Fig. 9. The status of ultimate sub-elements topology items.



4.1 The projection cavity construction algorithm

The projection cavity construction algorithm is achieved by eliminating some undesired

sub-elements that intersected with sphere from the ultimate refinement result. The elimination

process is conducted by superimposing ultimate refinement result. The straddling sub-elements are

thrown away. Remaining sub-elements are taken as the eligible patches. In this process, the jagged

core cavity faces should be as near to the sphere as possible. However, there is a separation between

the core cavity and the sphere which nearly equals to the edge of a patch in length. The spatial region

is named as the cavity-gap in this paper (see Fig. 10).

As is illustrated in the top row of figure 7, three different types of projection cavity construction

have been identified based on the intersection between the sphere and faces of sub-elements: (i) both

inner cavity and outer cavity, (ii) only the inner cavity and (iii) only the outer cavity. The first

projection cavity type are all regular cavity faces (i.e., quadrilaterals for all hexahedral sub-elements

or triangles for all tetrahedral sub-elements), that do not intersect with the sphere. The second and

third projection cavity types are due to the radius of sphere centered at the source point being too

large or too small, respectively. In these two cases, only the inner cavity or the outer cavity can be

obtained. For this situation, the projection cavity construction algorithm is invalid and unenforceable

to perform the cavity projection algorithm for patch generation. Thus, a projection cavity

construction technique by virtual operation, called virtual cavity face zoning algorithm is proposed in

the next subsection.

(a)



(b) (c) (d)

(e)

Fig. 10. Construction of valid jagged core cavities for projection: (a) ultimate subdivision sub-elements, (b) the

core projection cavities, (c) matching the core projection cavity to sphere, (d) convert relative sub-elements into

well-shaped serendipity patches, and (e) the resulting patch generation.

4.2 Virtual cavity face zoning algorithm

In order to ensure the validity of the projection cavity, an adaptive virtual cavity face zoning

algorithm is proposed. As depicted in Fig.11 and Fig.12, there is an intersection loop between the

sphere and the volume element. The intersection loop will subdivide the sub-element faces into a set

of polygonal faces, such as triangles, quadrilaterals or pentagons. The triangle faces and quadrilateral

faces are both regular cavity faces for patch generation. We can use the triangle faces and

quadrilateral faces to generate pentahedral and hexahedral patches, respectively. The pentagonal

faces are unable to perform the cavity projection algorithm directly, since there are no corresponding

patches for this cavity face type. Therefore, cavity faces of this kind should be converted to several

regular cavity faces, such as quadrilaterals or triangles. Five different types of polygonal face

partitions are summarized in Fig. 13 according to the intersection between the sphere and the volume

element. Type 1 and Type 2 indicate the cases of a triangle cavity face intersected with sphere. Type

3 to Type 5 represent that four vertices of a quadrilateral cavity face fall on either side of sphere. The

partitioning techniques are easily applied to reasonable cavity face configuration for cases of

arbitrary intersection between the sphere and element.



Fig. 11. An example of the inner virtual cavity construction.

Fig. 12. An example of the outer virtual cavity construction.

(a) Type 1 (b) Type 2 (c) Type 3

(d) Type 4 (e) Type 5

Fig. 13. Five types of polygonal faces partition based on intersection between the sphere and element.

The following techniques are employed to construct the valid projection cavities:

(1) Pick up the exterior faces of the straddling sub-elements as the component of outer

projection cavity. If there are no outer cavity faces, a virtual outer cavity is constructed

using the virtual cavity face zoning algorithm.

(2) If the inner projection cavity is needed, pick up the interior faces of the straddling

sub-elements or the faces of interior sub-elements that contact with straddling

sub-elements. If there are no interior cavity faces, construct a virtual interior cavity.

(3) Check the validity of inner or outer projection cavity construction. A valid projection

cavity requires that the continuity of the cavity faces should be guaranteed. It means that



there are no gaps between the cavity faces. Figure 14(b) shows an example of invalid

projection cavity. Further, the cavity faces should be balanced at the same level to avoid

the projection interference, as is shown in Fig. 14(e). Another requirement is that if the

filtered straddling sub-elements contain corner vertices; these corner vertices should be

included in the projection cavity.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 14. Schematic of the valid core jagged projection cavities construction: (a) ultimate subdivision sub-elements,

(b) the invalid projection cavity, (c) (d) the projection cavity without balance and its relative projection points,

(e) the projection interference, (f) (g) the balanced projection cavity and its relative projection points, (h) convert

relative sub-elements into well-shaped patches, and (i) the resulting patch generation.

5. Matching the projection cavity to sphere

Taking into account the definition of cavity-gap, it is reasonable to generate patches by projecting

the cavity faces along the specified direction or sweeping path until they reach the sphere (see the

bottom row of figure 7 for a simplified two-dimensional illustration). A general projection algorithm

and a sweeping projection algorithm are proposed and illustrated in this section. These algorithms

are used to fill the cavity-gap with a new layer of well-shaped patches, such as tetrahedral or

pyramidal, pentahedral or hexahedral patches.



5.1 The general projection algorithm

The general projection algorithm is based on the location of vertices and the number of cavity

faces around the vertex. Before discussing the general projection algorithm, some vocabulary of

cavity vertices according to their location is illustrated in Fig. 15. The blue vertices on the corners of

an element are called the corner vertices. The green vertices at the edges are called the frame vertices.

The yellow vertices on the boundary faces are called boundary vertices and the purple vertices inside

the cell are called interior vertices. The red vertices over the cavity loop and located on the root

element edge are called inflex vertices.

(a) (b) (c)

Fig. 15. Different types of projection vertices according to the location: (a) schematic of different types of vertices,

(b) the partial enlarged view of a boundary face, and (c) schematic of the inflex vertices and the intersection loop.

In order to ensure that the general projection algorithm can be applied, the following requirements

have to be satisfied. A vertex labeled P is the projection source point, which is obtained by

projecting the source point P to the boundary face or edge of element (see Fig. 16). The vertices

labeled A colored purple, yellow, blue, green and red represent interior, boundary, corner and frame

projection points, respectively. The vertices labeled A on the sphere are called the target projection

points, which is obtained by projecting the projection points A along the specified direction P A


to the spherical surface. If the target projection point A lies beyond the range of the boundary face

or edge of an element, it should be moved to points A  which is within the element. Different

target projection points A can be obtained according to the projection point type and the number of

cavity faces around the projection point A .

As is illustrated in Fig. 16, detailed description of the projection of different types of vertices using



the general projection algorithm is presented. The faces with purple lines are the cavity faces. The

faces with yellow lines are the boundary faces of the volume element. For the interior vertex and the

corner vertex that belongs to all its surrounding cavity root faces, the target projection point A is

obtained by projecting the projection point A along the radical direction (Fig. 16(a) and Fig. 16(b)).

For other situations, we should first project the source point P on the boundary root face or edge to

get the projection source point P . For the corner vertex that belongs to only one boundary root

cavity face, the target projection point A is obtained by projecting the projection point A along

the boundary root edge that does not belong to the cavity root face (Fig. 16(c1)). For the corner

vertex that belongs to two boundary cavity root faces, the target projection point A is obtained by

projecting the projection point A along the boundary root face which is not the cavity face (Fig.

16(d1)). For the boundary vertex, project the projection point A along its belonging boundary root

face to the spherical surface to get the target projection point A (Fig. 16(e1)). For the frame vertex

that belongs to only one cavity face, project the projection point A along the boundary root edge to

the spherical surface to get the target projection point A (Fig. 16(f1)). For the frame vertex that

belongs to multiple cavity faces, the target projection point A is obtained by projecting the

projection point A along the boundary root face which is not the cavity face (Fig. 16(g1)). If the

target projection point A lies beyond the range of the boundary root edge of an element, it should

be moved to points A  which is within the element (see (c2) and (f2) in Fig. 16). If the target

projection point A lies beyond the range of the boundary root face of an element, it should be

moved to points A  which is within the element (see (d2), (e2) and (g2) in Fig. 16).

(a) (b) (c1) (c2)



(d1) (d2) (e1) (e2)

(f1) (f2) (g1) (g2)

Fig. 16. Projection of different types of vertices using the general projection algorithm: (a) projection of the interior

vertex, (b) projection of the corner vertex that belongs to all its surrounding cavity root faces,

(c1)(c2) projection of the corner vertex that belongs to only one boundary cavity root face,

(d1)(d2) projection of the corner vertex that belongs to two boundary cavity root faces,

(e1)(e2) projection of the boundary vertex, (f1)(f2) projection of the frame vertex that belongs to only one cavity face,

(g1)(g2) projection of the frame vertex that belongs to multiple cavity faces.

The general projection algorithm is used for the projection of cavity vertices over the cavity loop

in the nearly singular domain integrals with discontinuous kernel. It is reasonable to generate patches

by projecting the cavity faces along the specified direction to fill the cavity-gap. For nearly singular

domain integrals with discontinuous kernel, the vertices over the cavity loop including boundary

vertices, frame vertices and corner vertices, should be projected along the boundary of element.

Inevitably, there are a limit number of degenerate patches generated when using the general

projection algorithm. These degenerate patches can be decomposed into several regular well-shaped

patches. Figure 17 lists corresponding decomposition templates for the different kinds of degenerate

patches. The decomposition templates as the segmentation of the degenerate patches into regular

ones are not unique. In addition to these basic decomposition templates, other available

decomposition templates can be created and developed according to specified requirements or the

intention of designers. The blue vertices and green vertices in Fig. 17 denote the projection cavity



points and target projection points, respectively. In our implementation, Type 1 describes the

situation that one target projection point is coplanar with the cavity face, which is decomposed into a

tetrahedral patch, a pyramid patch and a pentahedral patch. Type 2 depicts that two target projection

points are coplanar with the cavity face, which is decomposed into a pentahedral patch and a

hexahedral patch. The situation described in Type 3 is that three target projection points are coplanar

with the cavity face, which is decomposed into a hexahedral patch and two pentahedral patches. Type

4 illustrates that the target projection point and its projection point may be in the same position,

which is decomposed into a pyramid patch and a pentahedral patch. For simplectic domains, the

hexahedral patches and the pyramid patches are integrated using classical Gauss quadrature. The

tetrahedral patches are integrated using Hammer quadrature. More details of the proper quadrature

rules for simplectic domains can be found in [20-22].

(a) Type 1 (b) Type 2

(c) Type 3 (d) Type 4

Fig. 17. Decomposition templates for degenerate patches.

5.2 The sweep projection algorithm

In most cases, a mass of target projection points is projected outside of the volume element when

the sphere has a larger radius or the element is irregular, as shown in Fig. 18. It is very difficult to

solve this problem by the general projection algorithm. In this section, the sweep projection

algorithm is proposed for projection of cavity vertices in nearly singular domain integrals with

discontinuous kernel. Sweep method is one of the most robust mesh techniques to generate volume

meshes in extrusion volumes, which has an outstanding performance in the field of mesh generation.



More details of the sweep method can be found in [23].

(a) (b) (c)

Fig. 18. A tricky situation that a mass of target projection points are projected outside of the volume element:
(a) ultimate subdivision sub-elements, (b) construction of the inner cavity, and (c) relative target projection points.

One of the main issues to be dealt by any sweep algorithm is the projection of a source surface

mesh onto the target surface. For cases of arbitrary intersection between sphere and the volume

element, the sweep projection algorithm is used for projection of inner or outer cavity faces. This

projection is carried out by means of a least-squares approximation of an affine mapping defined

between the 3D spaces of the cavity faces. The main advantage of this method is that the sweep

projection algorithm does not require solution of any root finding problem to ensure that the target

projection points are on the target surface.

The sweep projection algorithm presented in this paper regards the inner or outer cavity as the

source surface and a piece of sphere with the intersection loop as the target surface. A particular

requirement is that the source cavity surface and target spherical surface must be topologically

equivalent and have same connectivity. Taking into account any situation of arbitrary intersection

between sphere and the volume element, it is reasonable to generate patches successfully under any

circumstances by sweeping a given discretization of the source cavity faces along the sweep path. An

example in Fig. 19 illustrates the feasibility and advantages of the sweep projection algorithm.

(a) (b) (c)



(d) (e) (f)

Fig. 19. Filling the cavity-gap using the sweep projection algorithm: (a) ultimate subdivision sub-elements,
(b) construction of the inner cavity, (c) relative target projection points, (c) relative target projection points,
(d) the interior serendipity patches, (e) the resulting patch generation, and (f) the partial enlarged view of
relative serendipity patches.

The main algorithm for patch generation by sweeping can be decomposed into the following five

steps:

Step 1. Construct the projection cavities using the core cavity construction algorithm and check their

validities, as illustrated in Fig. 20(a).

Step 2. Form an intersection loop as shown in Fig. 20(b) (i.e., form a polygon whose edges are

parallel to the boundary of element) as the boundary loop of target spherical surface for sweeping.

Step 3. Project the vertices over the outer loop of source cavity using the general projection

algorithm. Thus, an affine mapping can be established by the boundary data between the source

cavity surface and the target spherical surface, as shown in Fig. 20(c).

Step 4. Project the interior vertices of source cavity faces onto the target spherical surface by

sweeping, as shown in Fig. 20(d).

Step 5. Once all the target projection points on sphere are obtained, the cavity-gap can be filled with

a new layer of pentahedral or hexahedral and other kinds of degenerate but well-shaped patches.

Convert the degenerate patches to regular patches based on the standard decomposition templates

(see Fig. 20(e) and Fig. 20(f)).

(a) (b) (c)



(d) (e) (f)

Fig. 20. Schematic of the sweep projection algorithm: (a) construction of the projection cavity,
(b) forming an intersection loop, (c) projection of the vertices over the outer loop of source cavity,
(d) projection of the interior vertices of source cavity, and (e) (f) relative target projection points.

6. Numerical examples

Three groups of numerical examples and corresponding adaptive element subdivision for nearly

singular domain integrals with continuous and discontinuous kernel function are presented in this

section. Comparisons are made between the BTSM and the CSM for volume element integrals. For

the purpose of error estimation, relative error is defined as follows:

( ) ( )

( )

n e

e

I I
I




 (2)

where  is the relative error, and the subscripts (e) and (n) of I refer to the exact and numerical

solution of the volume element integral, respectively.

The following integral is considered to evaluate the nearly singular domain integrals with

continuous kernel function:
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We consider the following integral for numerical evaluation of the nearly singular domain

integrals with discontinuous kernel function:
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In preceding equations, N is the shape function and r denotes the distance between the source

point and the field point. Figure 21 provides a graphical illustration of the continuous and

discontinuous kernels in Eq. (3) and Eq. (4).



(a) (b)

Fig. 21. The graph of the continuous and discontinuous kernel: (a) the continuous kernel,

(b) the discontinuous kernel.

For demonstration purposes, adaptive element subdivision and corresponding numerical results for

volume elements of arbitrary type with various relative locations of the source point in the local

coordinate system of the element are included. In all numerical examples, the number of the

integration points used and the accuracy obtained by both the BTSM and the CSM have been

compared. In the physical coordinate system, vertex coordinates of a slender hexahedral element are

(1, 0, 0), (1, 0, 5), (1, 1, 5), (1, 1, 0), (0, 0, 0), (0, 0, 5), (0, 1, 5), (0, 1, 0). Vertex coordinates of a

slender tetrahedral element are (-3, -3, -3), (0, 1, 0), (0, 0, 1), (1, 0, 0), while vertex coordinates of a

regular tetrahedral element are (-2, -2, -2), (0, 2, 0), (0, 0, 2), (2, 0, 0). Vertex coordinates of a slender

pentahedral element are (0, 0.25, 0), (0, 0, 0), (0.25, 0, 0), (0, 1, 5), (0, 0, 5), (1, 0, 5). For each

example, we have included pictures of the patches obtained using our method. On the right of each

figure is the partial enlarged view of the part containing source point, from which we can see if the

patches of volume elements are acceptable in shape and size.

6.1 Evaluation of convergence performance of the BTSM

Three examples of different types of volume elements are presented to verify the accuracy and

convergence performance of the BTSM for nearly singular domain integrals. Unless otherwise

mentioned, Eq. (3) is used as the kernel for integration in this section. For the specific reference

subdivision ratio Ref , the ultimate element subdivision of volume elements is unique for the given

source point. In the BTSM implementation, different levels of the integration errors are guaranteed

by different number of the integration points for the given source point. To study the convergence of



the BTSM, nearly singular domain integrals are evaluated by the BTSM with increasing number of

the integration points for the same source point. Numerical results have been obtained for integration

with different number of the integration points. A comparison of convergence of the CSM and the

BTSM as shown below.

Slender hexahedral element

Figure 22 shows the element subdivision of slender hexahedral element for the specified source point

for nearly singular domain integrals. Numerical results are presented in Table 1 which clearly show

the superior convergence performance of the proposed method as compared to the conventional

subdivision method.

Fig. 22. The local parametric coordinate of source point is (1.01, -0.5, -0.75).

Table 1: Convergence of BTSM and CSM for nearly singular domain integrals

with the source point at (1.01, -0.5, -0.75)

Volume
element

Source point

The total number of
the integration points

Relative Error

CSM BTSM CSM BTSM

Slender
hexahedral

element
(1.01, -0.5, -0.75)

625 434 1.33e-001 8.25e-002

1080 904 3.93e-002 1.98e-003

2560 2372 5.30e-002 1.63e-004

5000 4790 1.97e-002 3.99e-005

Slender tetrahedral element

Figure 23 shows the element subdivision of slender tetrahedral element for the specified source point

for nearly singular domain integrals. Numerical results are presented in Table 2 which clearly show

the superior convergence performance of the proposed method as compared to the conventional

subdivision method.



Fig. 23. The local parametric coordinate of source point is (-0.01, 0.3, 0.3).

Table 2: Convergence of BTSM and CSM for nearly singular domain integrals

with the source point at (-0.01, 0.3, 0.3)

Volume
element

Source point

The total number of
the integration points

Relative Error

CSM BTSM CSM BTSM

Slender
tetrahedral

element
(-0.01, 0.3, 0.3)

375 355 1.29e-001 2.83e-002

1536 1315 2.74e-001 5.01e-003

3000 2426 1.74e-001 1.95e-004

3993 3502 4.89e-002 2.47e-005

Slender pentahedral element

Figure 24 shows the element subdivision of slender pentahedral element for the specified source

point for nearly singular domain integrals. Numerical results are presented in Table 3 which clearly

show the superior convergence performance of the proposed method as compared to the conventional

subdivision method.

Fig. 24. The local parametric coordinate of source point is (0.0, 0.75, -0.01).

Table 3: Convergence of BTSM and CSM for nearly singular domain integrals

with the source point at (0.0, 0.75, -0.01)

Volume
element

Source point

The total number of
the integration points

Relative Error

CSM BTSM CSM BTSM



Slender
pentahedral

element
(0.0, 0.75, -0.01)

686 594 4.20e-001 9.56e-002

1458 1219 2.70e-001 1.51e-003

2662 2355 1.88e-001 3.26e-004

5288 4953 1.35e-003 1.12e-005

Numerical results in Figs. 22-24 verify the superior convergence performance of the BTSM and

the quality of the element subdivision results in comparison with the CSM. Table 1 through Table 3

demonstrate that the accuracy of BTSM for integration is greatly improved with the increasing

number of the integration points. With similar number of the integration points, it is appealing that

significantly better accuracy can be achieved by the BTSM than the CSM. And above all, the results

of the BTSM for integration are stable and acceptable for different types of volume elements. It

clearly shows that the BTSM for nearly singular domain integrals has excellent properties of high

accuracy and superior convergence.

6.2 Evaluation of nearly singular integrals with continuous kernel

Slender hexahedral element

Figure 25 shows a typical example of the element subdivision of slender hexahedral element for

nearly singular domain integrals with continuous kernel. Numerical results presented in Table 4

clearly show the superior performance of the proposed method as compared to the CSM.

Fig. 25. The local parametric coordinate of source point is (1.01, -0.9, -0.95).

Table 4: Numerical evaluation of nearly singular domain integrals with continuous kernel

for slender hexahedral element

Volume
element

Source point

The total number of
the integration points

Relative Error

CSM BTSM CSM BTSM

Slender
hexahedral

(1.01, -0.9, -0.95) 1715 1497 1.81e-002 9.44e-005

(1.01, -0.5, -0.75) 2560 2372 5.30e-002 1.63e-004



element (1.01, 0.5, -0.25) 2560 2488 1.43e-002 1.06e-004

(1.1, 0.5, -0.25) 1715 1488 4.82e-003 4.18e-005

(1.001, 0.5, -0.25) 3645 3136 3.80e-002 6.53e-004

Slender tetrahedral element

A typical example of the element subdivision of slender tetrahedral element is presented in Fig. 26

for nearly singular domain integrals with continuous kernel. Numerical results with various relative

locations of the source point in the local coordinate system of the element in Table 5 clearly show the

superior performance of the proposed method as compared to the CSM.

Fig. 26. The local parametric coordinate of source point is (-0.01, 0.1, 0.1).

Table 5: Numerical evaluation of nearly singular domain integrals with continuous kernel

for slender tetrahedral element

Volume
element

Source point

The total number of
the integration points

Relative Error

CSM BTSM CSM BTSM

Slender
tetrahedral

element

(-0.01, 0.1, 0.1) 2187 2051 3.94e-001 4.06e-004

(-0.01, 0.3, 0.3) 3993 3502 4.89e-002 2.47e-005

(-0.01, 0.5, 0.5) 2662 2673 4.69e-003 1.44e-005

(-0.11, 0.3, 0.3) 2187 1763 3.57e-003 4.05e-005

(-0.001, 0.3, 0.3) 3993 4042 2.43e-002 5.92e-004

Slender pentahedral element

A typical example of the element subdivision of slender pentahedral element is presented in Fig. 27

for nearly singular domain integrals with continuous kernel. Numerical results with various relative

locations of the source point in the local coordinate system of the element in Table 6 clearly show the



superior performance of the proposed method as compared to the CSM.

Fig. 27. The local parametric coordinate of source point is (-1.0, 1.0, -0.01).

Table 6: Numerical evaluation of nearly singular domain integrals with continuous kernel
for slender pentahedral element

Volume
element

Source point

The total number of
the integration points

Relative Error

CSM BTSM CSM BTSM

Slender
pentahedral

element

(-1.0, 1.0, -0.01) 729 628 1.15e-002 8.57e-004

(-0.5, 0.875, -0.01) 1458 1652 1.66e-001 3.63e-004

(0.0, 0.75, -0.01) 2000 1744 6.32e-002 3.64e-004

(0.0, 0.75, -0.11) 1458 1398 1.77e-001 3.11e-004

(0.0, 0.75, -0.001) 4394 4235 8.08e-002 2.32e-004

6.3 Evaluation of nearly singular integrals with discontinuous kernel

Slender hexahedral element

Figure 28 shows a typical example of the element subdivision of slender hexahedral element for

nearly singular domain integrals with discontinuous kernel. Numerical results with various relative

locations of the source point in the local coordinate system of the element presented in Table 7

clearly show the superior performance of the proposed method as compared to the CSM.

Fig. 28. The local parametric coordinate of source point is (1.01, -0.5, -0.75).

Table 7: Numerical evaluation of nearly singular domain integrals with discontinuous kernel

for slender hexahedral element

Volume
element

Source point
The total number of

the integration points
Relative Error



CSM BTSM CSM BTSM

Slender
hexahedral

element

(1.01, -0.9, -0.95) 3645 3168 3.82e-002 1.02e-005

(1.01, -0.5, -0.75) 3645 3236 6.62e-002 1.77e-004

(1.01, 0.0, -0.5) 3645 3562 5.14e-002 4.60e-004

(1.02, -0.5, -0.75) 3645 3188 6.08e-002 5.08e-004

(1.001, -0.5, -0.75) 5000 4728 1.77e-002 2.19e-004

Regular tetrahedral element

A typical example of the element subdivision of regular tetrahedral element is presented in Fig. 29

for nearly singular domain integrals with discontinuous kernel. Numerical results with various

relative locations of the source point in the local coordinate system of the element in Table 8 clearly

show the superior performance of the proposed method as compared to the CSM.

Fig. 29. The local parametric coordinate of source point is (-0.01, 0.1, 0.1).

Table 8: Numerical evaluation of nearly singular domain integrals with discontinuous kernel

for regular tetrahedral element

Volume
element

Source point

The total number of
the integration points

Relative Error

CSM BTSM CSM BTSM

Regular
tetrahedral

element

(-0.01, 0.1, 0.1) 3000 3190 3.48e-002 5.73e-004

(-0.01, 0.5, 0.5) 3456 3669 4.45e-003 2.15e-005

(-0.02, 0.1, 0.1) 3000 3123 5.72e-002 1.81e-005

(-0.001, 0.1, 0.1) 5184 4832 3.88e-002 5.23e-004

Slender pentahedral element

A typical example of the element subdivision of slender pentahedral element is presented in Fig. 30



for nearly singular domain integrals with discontinuous kernel. Numerical results with various

relative locations of the source point in the local coordinate system of the element in Table 9 clearly

show the superior performance of the proposed method as compared to the CSM.

Fig. 30. The local parametric coordinate of source point is (0.0, 0.75, -0.01).

Table 9: Numerical evaluation of nearly singular domain integrals with discontinuous kernel

for slender pentahedral element

Volume
element

Source point

The total number of
the integration points

Relative Error

CSM BTSM CSM BTSM

Slender
pentahedral

element

(-0.9, 0.975, -0.01) 2662 2568 6.05e-002 3.81e-004

(0.0, 0.75, -0.01) 3456 3382 1.12e-001 3.54e-004

(0.5, 0.625, -0.01) 3456 3569 2.91e-002 3.31e-005

(0.0, 0.75, -0.02) 2000 2046 1.46e-001 6.08e-004

(0.0, 0.75, -0.001) 4394 4524 1.22e-001 5.79e-004

Numerical results in Figs. 25-30 demonstrate that well-shaped patches for hexahedral, tetrahedral

and pentahedral element can be obtained with the BTSM. These examples verify the robustness of

our algorithm and the quality of the element subdivision results in comparison with the CSM. Table 4

through Table 9 show that when the number of the integration points used is almost the same, the

accuracy obtained by our method is 2 to 3 orders of magnitude higher than that by the CSM. In

comparison with the CSM, significantly better accuracy is obtained by the BTSM for various

locations of the source point.

7. Conclusions and future work

We have proposed a binary tree subdivision method (BTSM) for evaluation of nearly singular

domain integrals with continuous or discontinuous kernel in BEM. By using the techniques of the

binary-tree subdivision scheme, construction of the projection cavities and the cavity projection

algorithm, well-shaped patches and excellent numerical results have been successfully obtained for



nearly singular domain integrals with continuous or discontinuous kernel. This subdivision method is

more convenient to implement for arbitrary shape of the element and arbitrary location of the source

point. Besides, the proposed method can guarantee the convergence of recursive subdivision based

on a given terminating condition and generate patches successfully and efficiently under any

circumstances.

In comparison with the CSM, the patches obtained are automatically refined as they approach the

source point. The patches in the neighborhood of the source point are smaller than the distant ones.

Besides, the average number of the quadrature points of patches are similar based on the quadrature

rules. Thus, the integration points are set denser around the source point, and are sparsely distributed

away from it. With the distinct feature that extensive unnecessary integration points can be avoided,

the computational efficiency of domain integration is increased significantly by the BTSM.

Significantly better accuracy is obtained by the BTSM for various locations of the source point.

Based on excellent properties of the spline rules for integration [24-27], the work of Gaussian rules

for spline space over simplices is ongoing, and the new results will be reported in near future. In

addition, extension of our work to 3D curved volume element for nearly singular domain integrals

and evaluating nearly singular domain integrals with discontinuous kernel including multiple

discontinuous points using the proposed method is ongoing.
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